top of page

PUBLICATIONS

“Mistakes are the portals of discovery”

-James Joyce-

FEBS cover.jpg
f1000 PNAS 2018.png

Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability.

Trainin, T., Brukental, H., Shapira, O., Attia, Z., Tiwari, V., Hatib, K., Gal, S., Zemach, H., Belausov, E., Charuvi, D., Holland, D., and Azoulay-Shemer, T. (2022).  Frontiers in Plant Science. 13: 941504

https://www.frontiersin.org/articles/10.3389/fpls.2022.941504/full

Shading Nets Reduce Canopy Temperature and Improve Photosynthetic Performance in ‘Pinkerton’ Avocado Trees during Extreme Heat Events.

Alon E, Shapira O, Azoulay-Shemer T, Rubinovich L. (2022). Agronomy.12:1360.

https://www.mdpi.com/2073-4395/12/6/1360

Revealing the genetic components responsible for the unique photosynthetic stem capability of the wild almond Prunus arabica (Olivier) Meikle.

Brukental, HS., Doron-Faigenboim, A., Bar-Ya’akov, I., Harel-Beja, R., Attia, ZPD., Azoulay-Shemer, T., Holland, D. (2021). Frontiers in Plant Science, Vol. 12 Issue 2583.

https://www.frontiersin.org/articles/10.3389/fpls.2021.779970/full    

Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2, abscisic acid, darkness, vapor pressure deficit, and ozone.
Zamora O., Schulze S., Azoulay-Shemer T., Parik H., Unt J., Brosché M., Schroeder JI., Yarmolinsky D., Kollist H.

 Plant J (2021).  Oct;108(1):134-150. https://onlinelibrary.wiley.com/doi/10.1111/tpj.15430

 

A role for calcium‐dependent protein kinases in differential CO2‐ and ABA‐controlled stomatal closing and low CO2‐induced stomatal opening in Arabidopsis.

Schulze, S., Dubeaux, G., Ceciliato H. O. P., Munemasa, S., Nuhkat, M., Yarmolinsky D., Aguilar, J., Diaz, R., Azoulay-Shemer, T., Steinhorst, L., Offenborn J.K., Kudla, J., Kollist, H. and Schroeder J.I. (2020). New Phytologisthttps://nph.onlinelibrary.wiley.com/doi/epdf/10.1111/nph.17079

Insights into the Molecular Mechanisms of CO2-Mediated Regulation of Stomatal Movements.

Zhang J, De-oliveira-Ceciliato P, Takahashi Y, Schulze S, Dubeaux G, Hauser F, Azoulay-Shemer T, Tõldsepp K, Kollist H, Rappel W-J, & Schroeder JI. 

Curr Biol (2018).

https://www.cell.com/action/showPdf?pii=S0960-9822%2818%2931344-7

Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells.

Negi, J., Munemasa, S., Song, B., Tadakuma, R., Fujita M., Azoulay-Shemer, T, Engineer. B.C., Kusumi, K., Nishida, I., Schroeder .I.J., Iba, K.  

PNAS (2018). 

http://www.pnas.org/content/early/2018/08/17/1810458115

 

Starch biosynthesis by AGPase, but not starch degradation by BAM1/3 and SEX1, is rate-limiting for CO2-regulated stomatal movements under short day conditions.

Azoulay-Shemer T., Schwankl, N., Rog, I.,Moshelion, M. Schroeder, J.I. 

FEBS letter (2018). 

https://www.ncbi.nlm.nih.gov/pubmed/30025149

 

Seeing is believing.

Azoulay-Shemer T., Hsu, P.K., Schroeder, J.I.

News and Views, Nature Plants. (3):765-766 (2017). 

https://www.nature.com/articles/s41477-017-0025-5

 

Starch biosynthesis in guard cells but not in mesophyll cells functions in CO2 -induced stomatal closing.

Azoulay-Shemer T., Bagheri A, Wang C, Palomares A, Stephan AB, Kunz, H.H, Schroeder JI.

Plant Physiology 171(2):788-798 (2016).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902578/

 

Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

Azoulay-Shemer T., Palomares A, Bagheri A, Israelsson-Nordstrom M, Engineer CB, Bargmann BO, Stephan AB, Schroeder J.I.

Plant J 83: 567-581 (2015).

http://onlinelibrary.wiley.com/doi/10.1111/tpj.12916/abstract

 

CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel W-J, Iba K, Schroeder J.I.

Trends in Plant Science (2015) Volume 21, Issue 1, January 2016, Pages 16-30, ISSN 1360-1385.

http://dx.doi.org/10.1016/j.tplants.2015.08.014

 

Pathway of Chlorophyll Breakdown in Citrus Fruit Peel, as Compared with Senescing Arabidopsis Leaves and Other Plant Systems.

Azoulay-Shemer, T., Harpaz-Saad, S., Eyal, Y. and Goldschmidt, E.E.

ISHS Acta Horticulturae. 892 (2011).

http://tinyurl.com/lwfjpzm

 

Dual, N and C-terminal, processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme.

Azoulay-Shemer, T., Harpaz-Saad, S., Cohen-Peer, R., Mett, A., Gidoni, D., Lovat, N., Krokhin, O., Spicer, V., Standing, G.K., Goldschmidt, E.E. and Eyal, Y.

Plant Cell Physiol. 52(1):70-83 (2011).

http://tinyurl.com/ljdpne5 

 

Citrus chlorophyllase dynamics at ethylene-induced fruit color-break; a study of chlorophyllase expression, post-translational processing kinetics and in-situ intracellular localization.

Azoulay-Shemer, T., Harpaz-Saad, S., Belausov, E., Lovat, N., Krokhin, O., Spicer, V., Standing, K.G., Goldschmidt, E.E., Eyal, Y.

Plant Physiology 148: 108-118 (2008).

http://www.plantphysiol.org/content/148/1/108 

 

Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post-translationally regulated.

Harpaz-Saad, S., Azoulay, T., Arazi, T., Ben-Yaakov, E., Mett, A., Shiboleth, Y.M., Hortensteiner, S., Gidoni, D., Gal-On, A., Goldschmidt, E.E., Eyal, Y.

Plant Cell 19: 1007-1022 (2007). 

http://www.plantcell.org/content/19/3/1007.long

 

 

 

 

 

 

Publication list on research gate

https://www.researchgate.net/profile/Tamar_Azoulay

 

bottom of page